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GROWER SUMMARY 

Headline 

Thermal images combined with visible light images have successfully identified stressed 

regions of a plant canopy with high accuracy.  

Background 

Thermal imaging has been shown to be suitable for stress and early disease detection in 

plants. However, there are problems associated with thermal imaging because of variation 

in the perceived temperature caused by various environmental factors. These include 

structure of the canopy, sunlit and shaded regions, leaf angles and the distance of imaging 

device from the plant. The major aim of the project is to combine information from colour 

and thermal images to model these variations as a function of leaf angles, light intensity and 

3D depth information. Results to date have shown that, with the help of statistical 

parameters and classification algorithms, water stressed and well watered canopies can be 

successfully distinguished. . Thermal and stereo colour images have been collected from 

powdery mildew inoculated tomato plants and these are now being processed.  This will 

include developing algorithms for accurate alignment of the thermal and colour images to 

create a depth map of the plant for analysis. The aim is to develop a 3D thermal profile of a 

crop to account for noise introduced due to the structure of canopy and develop new 

methods for early disease detection. 

Summary 

1. Thermal and stereo colour images were taken for 15 consecutive days from a 

tomato powdery mildew trial underway at Warwick Crop Centre (courtesy of Gillian 

Prince). Manual measurements of leaf temperature were also taken for two days. An 

algorithm has been developed for image rectification which is a pre-processing step 

before 3-D depth estimation. The process consists of aligning the same features 

from stereo image pair along a set horizontal line. Before analysis the images must 

be aligned in such a way that the same pixel location in both the images 

corresponds to the same physical location on the plants. Figure 1 shows a 3D profile 

of a tomato plant on day1 and day14 of inoculation with powdery mildew. 

Corresponding thermal images overlaid on the 3D profiles are also shown. On day1, 

leaves look more regular in shape and they appear to be at cooler temperature than 

the environment at about 18-20˚C, whereas on day14 leaves are more irregular in 

shape and their temperature is about 21-23˚C. Algorithms for accurate alignment of 
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these images need to be finalised, before analysis of disease progress can be 

undertaken.  

 
Figure 1: (a) & (c) 3D profile of a tomato plant on day1 & day14 of inoculation with powdery 
mildew. (b) & (d) show corresponding thermal image overlaid on 3D profile. On day1, leaves 
look more regular in shape and their temperature is about 18-20˚C, whereas on day14 
leaves are more irregular in shape and their temperature is about 21-23˚C. 
 

2. Thermal and colour images were obtained from a stress experiment carried out by 

Prof. Gail Taylor’s group at the University of Southampton. 108 images of a spinach 

canopy were provided in total, 54 images were taken from a drought canopy and 54 

images were from well-watered plants. Information from thermal and colour images 

was combined and machine learning techniques were used to distinguish between 

the two groups of plants. Results indicate that water stressed and well watered 

plants can be classified with an average accuracy of around 97.12%. Figure 2 

shows the result of the probability of an image showing stress given by the classifier 

against manually measured soil moisture values for images collected from Prof. 

Taylor’s experiment.  

(a) (b) 

(c) (d) 
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Figure 2: Probability of image showing drought-stressed plants vs soil moisture values 
(correlation value = - 0.89, High moisture means less probability of stress) (%Volume) as 
given by our classifier. Classification accuracy for this particular set of training and testing 
data was 98.62%. 

 

Financial Benefits 

Financial assessment is premature at this stage, although it is anticipated that stress 

detection in different parts of the crop could help growers to water crops more efficiently and 

detect disease at an early stage facilitating timely action which would mitigate against crop 

losses and some of the costs associated with treatment.  

Action point for growers 

Glasshouse growers could consider options for installing an overhead system for monitoring 

their crop, pending further developments as this project progresses.  
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SCIENCE SECTION 

Introduction 

Thermal imaging has been used in the past for stress and disease detection in plants [1–6]. 

One of the major problems associated with thermal imaging in plants is temperature 

variation due to canopy architecture, leaf angles, sunlit and shaded regions, environmental 

conditions and the distance of the plant from the camera. The major aim of this project is to 

combine information of stereo colour images with thermal images to overcome these 

problems and allow a precise 3-dimensional thermal profile of a crop to be quantified. In this 

report we present detail of experiments and results performed during the last year to obtain 

information on how we can use thermal and colour imaging for detecting disease and stress 

in plants, for the benefit of horticultural industry. This report contains work on images taken 

from two types of experiments.  

1. Tomato Plants infected with powdery mildew disease performed at Warwick Crop 

Centre. 

2. Stress experiment performed by collaborators at University of Southampton.  

An experimental setup was designed and developed at the Department of Computer 

Science (Warwick-DCS) for simultaneous capture of stereo and thermal images of 

diseased/normal plants as shown in Figure 1. First the setup was tested on trial 

experiments at DCS and Warwick Crop Centre (WCC), for any necessary modifications. 

After some minor modifications the setup was used to image an experiment on tomato 

plants infected with powdery mildew disease at WCC supervised by Gillian Prince. Images 

of 72 plants were taken every day for about two weeks along with manual measurement of 

leaf temperatures (for two days). Currently, we are working on the pre-processing of these 

images prior to analysis. The pre-processing steps comprise 1) image rectification, 2) 

disparity estimation and 3) image registration. Image rectification is a method which is used 

as a pre-processing step for computing disparity (depth) [7]. The process consists of 

aligning the same features from stereo image pair along the same epipolar line. We have 

developed an algorithm for rectification of these images, which uses selective markers. We 

have also evaluated the performance of some disparity estimation algorithms, however, the 

main focus of our work is automatic registration of thermal and colour images. The aim of 

registration is to align thermal and colour images in such a way that the same pixel location 

on both images corresponds to same physical location on plant(s). Currently we are working 
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on developing an algorithm for automatic registration of thermal and colour image as this is 

the main bottle neck before the analysis of images collected from the experiment.  

As part of work on stress analysis, we obtained thermal and colour images of a spinach 

canopy undergoing a water stress experiment from Prof. Gail Taylor’s group at University of 

Southampton. There has been a lot of work done on stress analysis of plants using thermal 

imaging, however very few researchers have exploited the information from colour images 

for analysis. Most of the work done is by using stress indices formulated by Idso and 

Jackson [8], [9]. Researchers have conducted various experiments to find a relationship 

between different stress indices and temperature values found by thermal imaging [10], 

[11]. However, we have presented a new technique here to enhance the ‘discriminatory 

power’ of thermal imaging to identify parts of the canopy which are under water stress. 

Instead of using stress indices to identify stress regions, we combine information from 

colour and thermal images and use machine learning techniques to distinguish water 

stressed and well-watered canopies. We get information about the light intensity and green-

ness of the plant from the colour images and use that information along with statistical 

information from thermal images to achieve this using support vector machines (SVM), 

Gaussian Processes Classifier (GPC) and a combination of both the classifiers. The results 

show that our algorithm can classify the stress regions of the canopy with an average 

accuracy of about 97.12%. 

 

Figure 1: Front view of the camera setup 

 

 

  

Left Camera 
Right Camera 

Thermal Camera 
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Materials and methods 

Disease Detection 

Development of the setup 

The Cedip Titanium thermal imaging camera from the EPSRC instrument loan pool was 

obtained on 29th August 2012. The first step was to build and prepare a setup which can be 

used to capture thermal and visible light images at the same time; we also wanted to have 

the camera lens(s) close to each other to avoid occlusions. The setup consists of thermal 

imaging camera Cedip Titanium and two visible imaging cameras canon powershot S100. 

The visible imaging cameras were mounted on the top of the camera with the help of a 

support designed at Computer Science Department as shown in Figure 1. The camera 

setup was put to trial on plants available within Computer Science and images were taken 

from the setup. 

Image Acquistion 

The setup was ready by mid-September and moved to the WCC at Wellesbourne. A trial 

experiment was setup with the help of Gillian Prince which included 6 tomato plants, one 

uninoculated and 5 inoculated with different concentrations of the powdery mildew fungus. 

Images from these plants were taken for two weeks and based on the results a specific 

concentration of 106 conidia/ml was identified for future inoculation of plants with some 

minor modifications to the imaging process. 

The experiment used for collecting the images from tomato plants consisted of 72 plants 

and 4 control treatments (as part of a different HDC project) and lasted for 15 days (from 

04-Oct 2012 to 18-Oct-2012). The following treatments were tested for the 72 plants: 

1. 18 untreated (normal) plants with no powdery mildew disease. 

2. 6 plants inoculated with powdery mildew without any control treatment 

3. 6 plants inoculated with powdery mildew + drench of 275.86, 7 days prior to 

inoculation with powdery mildew. 

4. 6 plants inoculated with powdery mildew + drench of 275.86, 3 days prior to 

inoculation with powdery mildew. 

5. 6 plants inoculated with powdery mildew + drench of 432.99, 7 days prior to 

inoculation with powdery mildew 

6. 6 plants inoculated with powdery mildew + drench of 432.99, 3 days prior to 

inoculation with powdery mildew 

http://www.canon.co.uk/For_Home/Product_Finder/Cameras/Digital_Camera/PowerShot/PowerShot_S100/index.aspx
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7. 6 plants inoculated with powdery mildew + drench of 19.79, 7 days prior to 

inoculation with powdery mildew 

8. 6 plants inoculated with powdery mildew + drench of 19.79, 3 days prior to 

inoculation with powdery mildew 

9. 6 plants inoculated with powdery mildew + drench of 433.99, 7 days prior to 

inoculation with powdery mildew 

10. 6 plants inoculated with powdery mildew + drench of 433.99, 3 days prior to 

inoculation with powdery mildew 

 

where 275.86, 432.99, 19.79 and 433.99 are the code names for the tested products. A 

picture of the setup used for capturing the images is shown in Figure 2. 

 

Figure 2: An overview of the experimental setup 

Thermal and visible stereo images from these 72 plants were collected for 15 consecutive 

days. Manual measurements of the leaf surface temperature were also taken with the help 

of a temperature probe and data was collected for two days. Some of the images are shown 

in Figure 3 

.  
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Figure 3: Sample images taken from the experiment, first two columns show raw images 
taken during the experiment. Third column shows enhanced thermal image for presentation 
purpose. 

Image rectification 

Image rectification is a process which consists of aligning the same features from stereo 

image pairs along the same epipolar line before depth estimation [12]. An example of the 

images is shown in Figure 4. In this figure, (a) and (b) show the images obtained from left 

and right cameras. In (c) both images are displayed on top of each other, the left image is 

displayed in red colour and the right image is shown in cyan colour and it is clear that the 

same features of plants do not lie on the same horizontal line. For rectification we have to 

align the images in such a way that we do not lose the depth information. We had placed 

markers at ground level for rectification purpose, as shown in Figure 4(c). By aligning the 

markers at the same pixel location in the images we get zero disparity at the ground level 

while the depth information of the plant is still retained. The algorithm used for this purpose 

consists of three steps.  

(a) Extraction of marker points.  

(b) Establishing correspondence between these points.  

(c) Find the transformation 
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Extraction of marker points 
 

1. Convert ‘RGB’ to ‘Lab’ colour space. 

2. Perform Principal Component Analysis (PCA) on ‘a’ and ‘b’ channels.  

3. Smooth the projection on 2nd principal component with Gaussian filter, sigma = 4. 

4. Threshold using otsu’s method. 

Establishing Correspondence between points 
 

1. Calculate the centre of marker points. 

2. Find pairwise distance between identified centres in left and right images. 

3. Look for minimum distance for each identified centre in left image with the centres of 

right image. 

4. The corresponding marker points will have minimum distance between them. 

5. As a verification step, find the angle formed by joining centres in the left image with 

the centres in the right image. All the corresponding marker points identified in step 

4 will have the same angle(s). 

Find the transformation 

 
1. Using the corresponding marker points identified in the previous step, find the 

transformation between the two images for rectification [13]. 

2. Apply the transformation on the right image to find a rectified stereo image pair. 

 

 

Figure 4: (a) & (b) show image from left and right camera, (c) image from left camera in red 
and image from right camera in cyan colour. 

Different steps for marker extraction are explained in Figure 5. (a) and (b) show ‘a’ and ‘b’ 

channels of Lab colour space for the image in Figure 4. The result of projection on 2nd 

principal component after performing PCA on ‘a’ and ‘b’ channels and smoothing with 

Gaussian is shown in (c). The result of threshold and the candidate marker points extracted 

(a) (b) (c) 



 Agriculture and Horticulture Development Board 2012. All rights reserved 
 

10 

are shown in (d). The extracted marker points in the left and right image are then used in 

the next step to find the correspondence between the points. 

Disparity estimation 

Disparity is the difference in location of a point as seen by left and right cameras. The 

difference in location of each point in the images can be interpreted into a 3D depth map of 

the scene/plant under observation[14]. We have used the algorithm presented by Konolige 

[15] to achieve this. The algorithm for disparity estimation comprises of following steps: 

1. Pre-filtering using Laplacian of Gaussian (LoG) transform to normalize image 

brightness and enhance texture. 

2. Correspondence search along horizontal epipolar lines using a Sum of Absolute 

Differences (SAD) window. 

3. Post-filtering with an interest operator and left/right check to eliminate bad matches. 

Texture-less regions give a less reliable measure of disparity than the textured regions. The 

last step uses a measure of texture in a scene as an interest operator which gives high 

confidence to areas that are textured in intensity. We will be evaluating the results of 

different disparity estimation algorithms once we start the analysis.  
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Figure 5: (a) & (b) show ‘a’ and ‘b’ channels of ‘Lab’ colour space for plant in Figure 4. (c) 
shows the result of projection on 2nd principal component after performing PCA on ‘a’ and ‘b’ 
channels and smoothing with Gaussian. (d) shows the result of threshold and the candidate 
marker points.  

Thermal and colour image Registration 

For combined use of thermal and colour image analysis on plants, it is necessary that the 

corresponding thermal and colour images are aligned in such a way that the same pixel 

location on both images correspond to same physical location in the plant(s). We have 

designed an algorithm for automatic registration of thermal and colour images in plants. The 

algorithm proposed for registration is as follows: 

1. Convert the RGB image to Lab colour space and subtract ‘a’ channel from ‘b’ 

channel. 

2. Remove non-uniform illumination artifacts by subtracting local mean with a window 

size of 55×55. 

3. Denoise the results of step 2 with anisotropic diffusion filtering. 

4. Calculate the gradient of colour image obtained as result of step 3 and the original 

thermal image using the sobel operator. 

5. Perform grayscale morphological operations on both gradient images and threshold. 

(a) (b) 

(c) (d) 
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6. Mark the boundary points of the plants in both thermal and colour images. 

7. Map the boundary obtained from colour image on the boundary obtained in thermal 

image. 

8. Apply the same transformation in step 7, on the colour image to obtain registered 

colour image. 

 

The algorithm proposed above is still under development and we are working on refining the 

results of our algorithm. More details about the results is presented in Experiments and 

Results section. 

Stress Detection 

Pre-processing 

We obtained thermal and colour images from a stress experiment performed by Prof. Gail 

Taylor’s group at University of Southampton. 108 images of spinach canopy were provided 

in total, 54 images were from a droughted canopy and 54 images were taken from well-

watered plants. The images obtained from the thermal camera are shown in Figure 6. A 

thermal image is obtained as an image with pixel intensity values ranging from 0-255. First 

step is to transform the image values to temperature values. We have used a character 

recognition algorithm based on cross correlation which automatically recognizes the 

characters in the temperature bar in  Figure 6(c) and identifies the temperature range for the 

thermal image [16]. Then we replace the image values which range from 0-255 with 

temperature values. 

 

Figure 6: Image(s) obtained using a thermal imaging camera (NEC Thermo TracerTH9100 
Pro). (a) shows thermal image with pixel values ranging from 0-255. (b)Rectangle shows 
region corresponding to thermal image in the colour image. (c) shows the corresponding 
temperature range. 

To get useful information from the images, both images must be aligned so that same pixel 

location in both images corresponds to same physical location in the plant. Since both 

(a) (b) (c) 
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thermal and colour images are coming from a single camera where there is a fixed 

transformation between thermal and colour images, we first find transformation between a 

pair of thermal and colour images by manually selecting control points and then we apply 

this transformation to all the images. To reduce the amount of noise present in the colour 

image, we apply anisotropic diffusion filtering [17]. The sample images in Figure 6 obtained 

after pre-processing are shown in Figure 7. The rest of the calculations are done on the pre-

processed images. 

 

Figure 7: Colour thermal images of Figure 6 obtained after pre-processing; (a) thermal 
image in Figure 6(a) has been replaced by temperature values. (b) colour image  in Figure 
6(b) has been transformed to match thermal image in a way that same pixel locations 
correspond to same point located on the plant. 

Feature Computation 

Features were selected on the basis of observations made by various researchers [2], [18–

22]. We select average values and variation in thermal profile of canopy and combine it with 

information from the colour image. As a first step we transformed the colour space of the 

colour image from RGB to Lab colour space as shown in Error! Reference source not 

found.. In Lab colour space instead of Red, Green and Blue channels, we have L-channel 

for luminance, ‘a’ and ‘b’ channel as the colour components. Features selected for our 

experiments are given in  

Table 1. 
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Figure 8: (a), (b) and (c) show 'L', 'a' and 'b' channels of the colour image. (d) shows the 

thresholded a-channel. 

 

Table 1: Features selected for our experiments. Feature type shows that corresponding 
feature contains information about colour (C) or thermal (T) data or both (C/T). 

 Symbol Description Type p-value 

1. LT  Luminance has been found to be a major factor to affect 

the thermal profile of an image [20]. In our work we 

scale the temperature values with the corresponding L-

channel of the colour image so that the effect of light 

intensity is incorporated into our model. After scaling 

temperature data with the L-channel we take the mean 

of the temperature values in an image as a feature. 

C/T 011.54 10   

2. a  The colour information tells us about the amount of area 

covered by the plants or other type of regions. In Error! 

Reference source not found.(b), lower intensities 

correspond to green parts of the plant whereas the 

background is at higher intensity value. For this reason 

we use the mean of the a-channel in our set of features. 

C 071.92 10   

3. b  Similar to feature 2, in Error! Reference source not 

found. (c) darker regions correspond to background 

and so we add the mean of the b-channel to our set of 

C 041.67 10   

(a) (b) 

(c) (d) 
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 Symbol Description Type p-value 

features. 

4. nT  The amount of variation present in an image is also 

important [2]. We normalize each row of the 

temperature data by its median and then take the 

standard deviation of the temperature values as a 

feature, to find the amount of variation in the canopy 

region covered by the image. 

T 192.89 10  

5. Ta  In Lab colour space lower values in a-channel 

correspond to Green region. We threshold the a-

channel using Otsu’s method to find the background 

regions as represented by white pixels in Error! 

Reference source not found. (d). We discard 

temperature values corresponding to background and 

calculate mean of temperature values corresponding to 

rest of pixels, as a measure of mean temperature at 

green parts of the plant. 

C/T 211.88 10   

6. Ta  Similar to feature 5, we discard the temperature values 

corresponding to background and calculate standard 

deviation of temperature values corresponding to rest of 

pixels as a measure of variation in thermal intensities at 

green parts of the plant. 

C/T 041.024 10   

7. T  Mean of temperature values T 211.46 10  

8. T  Standard Deviation of temperature values T 041.12 10  

Support Vector Machines (SVM) 

Support Vector Machines (SVM) [23] is a supervised learning method used for classification 

and regression analysis. SVM constructs a hyperplane in high dimensional space and tries 

to find the hyperplane which maximizes the separation between two classes of training data 

points. In this work, we have used linear SVM which uses the model 

 
Ty b w x   (1) 

where [ , , , , , , , ]LT nT T T T T       x a b a a  denotes the input feature vector for an image and y 

denotes the classification output (+1 for plants undergoing water stress, and 1 for well-

watered plants). SVM models the parameters b and w to find the maximum margin 

hyperplane between data points from two classes. 
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Gaussian Processes for Classification 

Gaussian Processes can be defined as a class of probabilistic models comprising of 

distributions over functions instead of vectors [24–26]. A Gaussian distribution can be 

expressed by a mean vector and a covariance matrix. A Gaussian Process (GP) is fully 

characterized by its mean and covariance functions. In machine learning, GPs have been 

used for regression analysis and classification. Similar to SVM, Gaussian Process 

Classifiers (GPCs) also belong to the class of supervised classification methods. However, 

instead of giving discriminant function values it produces output with probabilistic 

interpretation, i.e. a prediction for ( 1| )p y   x which denotes the probability of assigning a 

label (y) value +1 to the input feature vector x [27]. GPCs do not calculate this probability 

directly on the input variables and assume that that the probability of belonging to a class is 

linked to an underlying latent function. Given a training set {( , ) | 1,2,... }i iD y i n x  

consisting of training images of both classes (water stress and well-watered) with manually 

assigned labels yi to the corresponding feature vectors xi extracted from those images, to 

make predictions about the label of the feature vectors computed from an unseen image *x , 

we have posterior probability 

 
* * * * * * *( 1| , ) ( 1| ) ( | , )    x xp y D p y f p f D df   (2) 

The probability of belonging to a class 1iy    for an input ix  (known data point) is related 

to the value if  of a latent function f. The latent function f is a GP which models the 

likelihood of one class versus the other over the x-axis [28].  This relationship is defined with 

the help of a squashing function. In our case, we use Gaussian cumulative distribution 

function as the squashing function. 

 
( )1

( 1| ) 1
2 2

i i
i

erf y f
p y f

 
    

 
  (3) 

where ( )erf z  is the error function defined as 
2

0

2
( )

z

terf z e dt


  .The second term in the 

integral in equation (2) is given by, 

 
* * * *( | , ) ( | , , ) ( | ) x X xp f D p f p D df f f   (4) 

where 1 2[ , ,..., ]nX x x x  and 1 2[ , ,.... ]nf f ff , n is the number of samples. ( | )p Df  can 

be formulated by the Bayes’ rule as follows, 
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1

( | )
( | ) ( | )

( | ) 

 
X

X

n

i i

i

p
p D p y f

p

f
f

y
  (5) 

and ( | )i ip y f  can be calculated by equation (3) and ( | )Xp f  is the GP prior over latent 

function. Since a GP is characterized by a mean function and a covariance function. Here, 

we use zero mean for symmetry reasons, and for covariance function we have selected 

linear covariance function which has been found to be effective in classification problems 

[24]. The normalization term in the denominator is the marginal likelihood given by 

 
1

( | ) ( | ) ( | )


 y X X
n

i i

i

p p p y ff   (6) 

where 1 2 n= { , ,.... }y y y y . The second term in the above equation is not Gaussian and this 

makes the posterior in equation (5) analytically intractable. Analytical approximations or 

Monte Carlo methods can be used. Two commonly used approximation methods are 

Laplace approximation and Expectation Propagation (EP). EP minimizes the local Kullback-

Leibler (KL) divergence between the posterior and its approximation and has been found to 

be more accurate in predicting than Laplace approximation [18-19]. We use EP for 

approximation in our experiments. 

Experiments and Results 

Disease Detection 

Thermal and stereo colour images from powdery mildew experiments on tomato plants 

were taken on 15 consecutive days. The results of image rectification and disparity 

estimation after rectification are shown in Figure 9. In this figure (a) and (b) show overlaid 

images from left (red) and right (cyan) cameras before and after rectification respectively. It 

is clear from (b) that the same features of plants lie on the same horizontal line. In the 

rectified image, pixels on the ground have zero disparity and as we move above the ground 

disparity increases. The result of disparity for this particular image pair is shown in Figure 9 

(c). There is some noise from the background which can be removed. There are also some 

dark spots in the plant region in the disparity image, but these become part of disparity 

image because of occlusions. We are working on more sophisticated methods for disparity 

estimation for comparison in analysis. 

Registration of thermal and colour images is a major part of this project and we are currently 

working on this problem. Preliminary results of our registration algorithm is shown in Figure 

10 (c). In this figure the thermal image is overlaid on a registered colour image. There is still 

need for improvement and refinement of registration results as shown in Figure 11 (a). The 
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figure shows the result of registration and on the right a part of the image is shown after 

zooming in. It is clear that there are still some spaces in this registration result which are not 

yet aligned. We are currently working on refining our results so that the result of registration 

becomes more accurate. Another problem we are facing with registration is that the thermal 

images are not consistent in behaviour which is natural for these images as the disease 

progresses. Registration of these images become difficult because the shape of leaf 

becomes more irregular and it becomes difficult to distinguish the background from the 

plant. An example of such an image is shown in Figure 11 (b). The image shown is an 

enhanced version of the image, even in this enhanced image it is very difficult to distinguish 

between plant and the background. Another problem in this image is that some of the 

regions in the plant are at higher temperature from the ground and some of them are at a 

lower temperature from the ground. This makes it difficult to distinguish the regions 

belonging to plant and the background. We are working on the registration of these kinds of 

images, as soon as we get some good results for registration, we will be ready to do 

analysis on the collected data. 

 
Figure 9: (a) shows images from left (red) and right (cyan) cameras before rectification. (b) 
shows images from left and right cameras after rectification. (c) shows the result of disparity 
estimation algorithm used in our experiments.  

 
Figure 10: (a) & (b) show the colour and corresponding thermal image. (c) shows the 
registered thermal and color images with (inverted) thermal image overlaid on the colour 
image.  

(a) (b) (c) 

(a) (b) (c) 
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Figure 11: (a) Result of registration on whole image is shown on left and on the right it 
shows zoomed image of registration result. (b) an enhanced version of a thermal image is 
shown from a diseased plant.  

Stress Detection 

A total of 108 images of a spinach canopy were obtained, 54 images were taken from well-

watered plants (treatment A) and 54 images were from a drought canopy (treatment B). 

After pre-processing, six different features (first six from  

Table 1) were obtained from each image. We use SVM and GPCs to classify the test 

images into drought and well-watered. For SVM we used linear kernel and for GPC we 

choose zero mean and a linear covariance function. As discussed before, SVM gives 

discrete classification results and we get each image classified as treatment A or Treatment 

B image, whereas, GPCs give probability of each image to belong to treatment B vs the 

values of soil moisture as shown in Figure 12. It is clear from Figure 12 that classification 

results shown by our classifier are in agreement to with the manually calculated soil 

moisture values. Based on the probabilities given by GPC, we can efficiently classify the 

image as an image from treatment A or treatment B canopy. 

Since we are using two different types of classifiers we noticed disagreement in the results 

of both classifiers in some cases. We can use this disagreement to further refine our 

classification results. We combine information from both the classification methods to 

reduce the error from classification. If an image is classified by SVM as treatment A, we 

check its probability of belonging to treatment B as given by GPC. If the probability is higher 

than 80% then we classify this image as treatment B. On the other hand if an image is 

classified as treatment B and its probability according to GPC is less than 20%, we classify 

this image as image from treatment A. 

 

 

(a) (b) 
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Figure 12: Probability of belonging to treatment B vs Soil moisture values (correlation value 
= - 0.89, High moisture means less probability of stress) (%Volume) as given by our 
classifier. Classification accuracy for this particular set of training and testing data set was 
about 98.62%. 

We ran 200 iterations to test the accuracy of our classifiers for different pairs of the training 

and testing data sets. In each iteration, we randomly picked 36 images (18 from each 

treatment) for training purpose and tested our algorithm on the rest of the 72 images. The 

results for different classifiers are given in  

 

 

 

 

 

Table 2. GPC shows better results than SVM classifier; however it can be seen that if we 

combine information from both the classifiers, we get better results in terms of sensitivity, 

specificity, positive predictive value (PPV) and accuracy. We obtained an average accuracy 

of 96.27% by using SVM, 96.68% by using GPC and a slightly higher 97.12% when we 

combine the information from both the classifiers. We have compared our results with 

colour only and temperature only features and we have found that combining information 

from both temperature and colour data increases the accuracy of classification. We have 

found that including mean and standard deviation without combining them with colour 

information deteriorate the performance of our results, so we remove mean ( T ) and 

standard deviation ( T ) from our set of features. 
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Table 2: Comparison of average classification results of different classifiers using our 
algorithm. 

Feature(s) 
selected 

Classifier 
Sensitivity 
(%) 

Specificity 
(%) 

PPV (%) 
Accuracy 
(%) 

accuracy
 

Colour only 

(
a ,

b ) 

SVM 67.28 70.29 70.98 67.74 3.36 

GPC 80.68 52.96 21.68 56.87 3.55 

Both 
Classifiers 

67.32 70.42 71.11 67.80 3.40 

Thermal 
only 

( T , T ) 

SVM 93.35 91.28 90.89 92.14 1.92 

GPC 93.06 80.30 76.67 85.42 2.29 

Both 
Classifiers 

93.35 91.28 90.88 92.14 1.92 

Features 
(1-8) 
Table 1. 

SVM 95.52 96.39 96.30 95.85 1.97 

GPC 96.38 97.39 97.30 96.79 1.56 

Both 
Classifiers 

96.62 96.93 96.84 96.70 1.60 

Features 
(1-6) 
Table 1. 

SVM 95.86 96.86 96.80 96.27 1.58 

GPC 96.53 96.99 96.90 96.68 2.00 

Both 
Classifiers 

96.97 97.38 97.31 97.12 1.52 

 

In our experiments, we found that scaling with luminance intensity ( LT ) plays a major role 

in classification. We removed luminance intensity scaling feature (p-value = 0.154) from our 

set of features, we found that accuracy of the classifiers falls as given in Table 3. In case of 

GPC classification accuracy falls up to 7%. This shows that not only selection of good 

features is very important when we classify the data from thermal images for stress analysis 

but also information from corresponding colour image is very useful. A video demonstration 

of the software developed for this purpose can be viewed at 
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http://www.youtube.com/watch?v=kNwChVGGZlE. A snapshot of the software is given in 

Figure 13. 

 

 

 

Table 3: Comparison of average classification results of different classifiers without using 
light intensity scaling feature ( LT ). [OPTIONAL] 

 Sensitivity (%) Specificity (%) PPV (%) Accuracy (%) accuracy
 

SVM 94.98 95.01 94.83 94.84 2.01 
GPC 88.21 91.84 92.05 89.70 2.61 
Both Classifiers 95.28 95.27 95.08 95.12 1.89 

 

 

Figure 13: Snapshot of the software developed for analysis of drought plants 

Conclusions and Future Work 

In this report, we have presented the algorithms, experiments and results obtained during 

the last year for combined thermal and colour image analysis of plants for disease and 

stress detection. On the disease detection part of the project we have collected data from a 

powdery mildew experiment being performed on tomato plants. Thermal and colour image 

data was collected every day for about two weeks along with manual measurements of 

temperature values for a couple of days. We have developed and tested algorithms for 

image rectification, disparity estimation and registration of thermal and colour images. We 

are satisfied with the results of image rectification but need to develop more sophisticated 

algorithms for disparity estimation and registration of thermal and colour images. 

http://www.youtube.com/watch?v=kNwChVGGZlE
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Registration of thermal and colour images is currently the main focus of our work, as good 

registration is necessary for combined analysis of thermal and colour data. On the stress 

analysis of the spinach canopy we have achieved some good results and we are working 

closely with collaborators at University of Southampton for publication and analysis of more 

data if available. The future work plan is as follows: 

1) Refine registration algorithm (disease data) and enhance its capability to register 

noisy thermal images. 

2) Following 1), use various statistical approaches for analysis of the disease images 

and compare results using different depth estimation algorithms. Analysis of images 

from diseased plants can be extended and compared with results obtained from 

stress experiment to see if a crop under stress can be distinguished from a crop 

under attack of disease. 

3) Capture more data from the industry so that we can modify and enhance our 

algorithms for practical use. We have applied for acquisition of EPSRC Cedip 

Titanium thermal imaging camera, which we hope to get in August-September 2013. 

Once we get the confirmation from EPSRC we will liaise with industry to make an 

arrangement for imaging setup. Currently, we plan to do imaging at Bordon Hill 

nurseries and Double H nurseries.  
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